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ABSTRACT
Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle
acceleration. However, it remains unclear down to what energy scales this impulsive energy release continues, which has
implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through
their X-ray emission, finding predominantly thermal emission at lower energies; however, at higher energies it can be difficult
to distinguish whether the emission is due to hotter plasma and/or accelerated elections. We present the first application of
nested sampling to solar flare X-ray spectra, an approach which provides a quantitative degree of confidence for one model over
another. We analyse NuSTAR X-ray observations of a small active region microflare (A0.02 GOES/XRS class equivalent) that
occurred on 2021 November 17, with a new Python package for spectral fitting, sunkit-spex, to compute the parameter posterior
distributions and the evidence of different models representing the higher energy emission as due to thermal or non-thermal
sources. Calculating the Bayes factor, we show there is significantly stronger evidence for the higher energy microflare emission
to be produced by non-thermal emission from flare accelerated electrons than by an additional hot thermal source. Qualitative
confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in SDO/AIA’s EUV data. The nested
sampling approach used in this paper has provided clear support for non-thermal emission at the level of 3×1024 erg s−1 in this
tiny microflare.
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1 INTRODUCTION

Flares are explosive releases of energy that take place in active re-
gions (ARs) thought to be produced and powered by magnetic recon-
nection of stressed magnetic fields in the solar atmosphere (Priest &
Forbes 2002). The reconnection can release energies up to ∼1032 erg
and readily drives mass flows, plasma heating, and particle accel-
eration (Fletcher et al. 2011; Benz 2017). Flares produce emission
across the electromagnetic spectrum and are commonly characterised
by their GOES 1–8 Å soft X-ray (SXR) emission and thermal energy
release. Flares with SXR emission <10−6 W m−2 and energies be-
tween 1026–1028 erg are commonly referred to as microflares (Lin
et al. 1984; Hannah et al. 2011).

Flares with energies on the order of ∼1024 erg, termed nanoflares,
are proposed to occur everywhere on the solar disk and not just
localised to ARs (Parker 1988). If microflares and nanoflares occur
frequently enough then they could provide the majority fraction of
the energy heating the corona from the overall flare distribution;
however, this relies on the same flaring mechanisms scaling down to
the weaker events, such as non-thermal particle acceleration emission
(Hudson 1991). It is often difficult to ascertain if weak, sub-A class
microflares do indeed show positive evidence for these standard flare
processes often observed in their larger counterparts.

★ E-mail: coop0502@umn.edu (KC)

Microflares have been extensively studied in X-rays with instru-
ments such as the Reuven Ramaty High-Energy Solar Spectroscopic
Imager (RHESSI; Lin et al. 2002), Chandrayaan-2’s Solar X-ray
Monitor (XSM; Vadawale et al. 2014; Shanmugam et al. 2020),
and the Nuclear Spectroscopic Telescope ARray (NuSTAR; Harri-
son et al. 2013). Statistical and individual studies have observed
hard X-ray emission during microflares from non-thermal electron
acceleration showing evidence that microflares down to GOES class
A0.1 appear to show similar processes to their brighter counterparts
(Christe et al. 2008; Hannah et al. 2008; Glesener et al. 2020; Cooper
et al. 2021). However, as the microflares get weaker it becomes in-
creasingly difficult to determine if this flare behaviour continues to
scale or has a lower limit. Sensitivity to these weak microflares is cru-
cial in understanding if the flare process scales across these different
classifications.

NuSTAR is an astrophysical telescope capable of observing the
Sun>2.5 keV (Grefenstette et al. 2016; Hannah et al. 2016). NuSTAR
consists of two telescopes utilising Wolter- i type optics to focus X-
rays onto two focal plane modules (FPMA and B), each with a field of
view (FOV) of 12′×12′. Each FPM takes 2.5 ms to process a detected
photon during which no other trigger can be recorded; the fraction
of time NuSTAR spends open to detection during an observation is
quantified by the livetime. Under quiescent conditions NuSTAR’s
livetime can reach up to 92% (Paterson et al. 2023); however, the
livetime drops to <16% even with small microflares of A-class or
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Figure 1. SDO/AIA, including Fe xviii proxy, and NuSTAR livetime corrected light curves over the time of microflare SOL2021-11-17T21:14 (left panels).
The SDO/AIA time profiles are averaged over the black box region shown in Figure 2 and a scale factor (for plotting purposes) has been applied, as shown,
to several channels. The area used to create the NuSTAR light curves is shown as a black box across AR SPoCA 26190 in the NuSTAR >2.5 keV integrated,
livetime corrected FOV (right panel). A pre-flare (21:09:40–21:12:00 UT) and microflare (21:12:30–21:14:50 UT) time is indicated by the shaded red and blue
areas in the NuSTAR light curve panels, respectively. The red circle with a radius of 48′′ shown in the right panel indicates the region size used to produce
spectral fit profiles for the NuSTAR spectra.

smaller (Cooper et al. 2021). This limited throughput, combined with
flare X-ray spectra steeply falling with increasing energy, results in a
low number of NuSTAR counts at higher energies.

NuSTAR has observed several microflares with energies from
1028 erg down to 1026 erg with GOES classes of B, A, and sub-
A (Glesener et al. 2017; Wright et al. 2017; Hannah et al. 2019;
Cooper et al. 2020, 2021; Duncan et al. 2021) and also quiescent
Sun features outside ARs of energies down to 1026 erg (Kuhar et al.
2018; Paterson et al. 2023). Several of these studies have found con-
sistency with the presence of non-thermal emission throughout the
flare evolution while Glesener et al. (2020) and Cooper et al. (2021)
show convincing evidence of non-thermal emission in an A5.7 and
an estimated A0.1 microflare, respectively.1

It becomes more difficult with weaker flares to confidently deter-
mine the presence of any high-energy emission and even harder to
determine the mechanism behind the emission. In order to determine
the nature of the higher energy emission observed by an instrument
from much weaker microflares, a robust method needs to be utilised
which can investigate the difference between different model repre-
sentations of the observed data. Nested sampling analysis (Skilling
2004, 2006) can be used for this purpose. Note, this analytical tech-
nique can also be applied in general cases (e.g., in larger flares) where
ambiguity exists between model fits to data.

Nested sampling is a Bayesian technique which is used to map
the posterior distribution and estimate a quantity called the evidence
which is the probability of an observation given the assumption of
a model representation. The evidences of different hypotheses can
be then used to compare different model fits to data, providing a
level of confidence for one model over another. The nested sampling
algorithm also accounts for different model parameters and different
numbers of model parameters used between representations. There
are many implementations of nested sampling (Kester & Mueller
2021; Ashton et al. 2022) and it is used extensively in many scientific
fields (Knuth et al. 2015); however, it is not common in the solar
physics community.

1 A NuSTAR solar observations overview is available at https://ianan.
github.io/nsigh_all/

In this paper, we present the first use of nested sampling in the
analysis of an active region NuSTAR X-ray microflare which took
place on 2021 November 17 at ∼21:14 UT (SOL2021-11-17T21:14).
In Section 2, we investigate the microflare evolution in time, space,
and energy using NuSTAR and the Solar Dynamic Observatory’s
Atmospheric Imaging Assembly (SDO/AIA Lemen et al. 2012) and
Heliospheric and Magnetic Imager (SDO/HMI Schou et al. 2012).
We then describe the nested sampling algorithm and how this can be
used to determine the most likely model representation to explain a
given data-set in Section 3. In Section 4, we then apply the nested
sampling algorithm to the NuSTAR X-ray spectral analysis for the
first time where we determine the most likely explanation for the
microflare emission.

2 X-RAY MICROFLARE

A NuSTAR solar campaign was performed on 2021 November 17–
22 where nine hour-long observations were made of active regions
present on the Sun’s disk. During the third observation NuSTAR ob-
served three microflares where the second one (microflare SOL2021-
11-17T21:14) is the subject of this paper, the other flares and obser-
vations will be investigated in future papers.

2.1 Time evolution

Microflare SOL2021-11-17T21:14 is clearly observed in X-rays with
NuSTAR as shown in Figure 1. The extreme ultraviolet (EUV) and
X-ray time profiles from SDO/AIA and NuSTAR, respectively, are
shown (left panels) where the SDO/AIA light curves are from a
region around the microflare (see Figure 2) and the NuSTAR time
profiles are integrated over the entire AR area indicated by a black
box in Figure 1 (right panel). The X-ray image (right panel) shows
the microflare in the top of NuSTAR’s FOV, inside the black box, as a
relatively bright source compared to the more northern AR (SPoCA
26190; Verbeeck et al. 2014) core emission.

We find that the native SDO/AIA channel light curves in Figure 1
(top of left panel) show little similarity with the X-ray time profiles
(bottom of left panel) with the exception of the 94 Å channel which
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Figure 2. SDO/AIA native channels and Fe xviii proxy are averaged over the microflare time (blue shaded region, Figure 1) while the SDO/HMI line-of-sight
magnetogram is taken from the start of the time range. The left panel shows the 94 Å channel emission over the full active region with a FOV slightly smaller
than the boxed region in the NuSTAR image from Figure 1. A black box indicates the location of the microflare and is used to create the zoomed in images for
the other emission channels (right panels). The Fe xviii proxy microflaring loop emission contours at 5%, 50%, and 95% of the maximum are overlaid on the
zoomed panels and are shown in red.

shows a slight positive correlation and a possible negative correlation
with the 304 Å channel. The microflare only becomes apparent in
the EUV when calculating the Fe xviii proxy channel—a linear com-
bination of the 94 Å, 171 Å, and 211 Å channels—as described in
Del Zanna (2013). This channel has a significant response to thermal
emission from material between 4–10 MK which is a crucial range
for NuSTAR microflares (Hannah et al. 2016, 2019; Wright et al.
2017; Glesener et al. 2020; Cooper et al. 2020, 2021; Duncan et al.
2021).

The Fe xviii light curve shows very similar progression to the 2.5–
6 keV FPMA+B NuSTAR time profile indicating this microflare heats
a significant amount of material to between 4–10 MK. The higher
energy X-ray range, 6–10 keV, shows a more impulsive time profile
that peaks earlier, indicative of hot plasma being present in the early
stages of the microflare and/or non-thermal emission from an initially
accelerated electron distribution.

A pre-flare and microflare time is defined from the NuSTAR time
profiles and shown as a red and blue shaded region, respectively, in
Figure 1. The microflare time is chosen based on the more impul-
sive 6–10 keV NuSTAR light curve to better investigate the emission
processes in the initial flaring stages.

The microflare, along with many events NuSTAR observed in the
observation campaign, is obvious in the X-ray regime where it is dom-
inant across the whole FOV; however, as indicated by the SDO/AIA
light curves in Figure 1, it is difficult to find corroborating evidence
in the native EUV channels even when locating the microflare’s posi-
tion. Therefore, the EUV microflaring structure can only be reliably
determined with information from NuSTAR and its comparison to
Fe xviii images.

2.2 Spatial evolution

Figure 2 shows EUV images integrated over the microflare time.
Comparable in size to the black box shown in the NuSTAR FOV
image in Figure 1 (right panel), the left panel of Figure 2 shows the
SDO/AIA 94 Å channel emission of the full AR with the microflare

identified within a black box. The black box region identified to host
the microflare is the area used to depicted the other panels.

The Fe xviii proxy channel and, to a lesser extent, the 94 Å channel
show a loop structure while the other channels do not show any corre-
sponding activity except at the apparent loop footpoints. Footpoint ac-
tivity can be seen through all EUV channels; however, the footpoints
do not appear to produce the same response at all levels in the solar
atmosphere. The northern footpoint appears brighter in the upper
transition region as shown by the relative brightness in 131 Å, 171 Å
whereas the southern footpoint shows a greater response in the chro-
mosphere and photosphere as seen in the 304 Å, 1600 Å, and 1700 Å
channels (Lemen et al. 2012). From the SDO/HMI panel in Figure 2
we find the loop footpoints are anchored in opposite polarity regions.

Zoomed images with NuSTAR emission only showed a single
circular shape to co-align with the EUV loop structure for the 2.5–
6 keV and 6–10 keV emission. The lack of distinctive shape in X-rays
may be expected due to the very few high energy microflare counts
and the fact the angular extent of the microflare is ∼10′′ which
is considerably smaller than NuSTAR’s angular resolution with a
FWHM and HPD of 18′′ and ∼60′′, respectively (Harrison et al.
2013).

From the EUV images shown in Figure 2 we are able to obtain a
microflaring loop volume by modelling it as a half-torus. We esti-
mate an upper limit for the distance between the footpoints and the
diameter of the loop to be approximately 9′′ and 2′′ (6.5×108 cm
and 1.5×108 cm), respectively. Therefore, the volume obtained from
the geometry as viewed in EUV is 1.7×1025 cm3.

2.3 Spectral evolution

Figure 3 shows the spectral fitting analysis (see Section 2.3.1) of the
NuSTAR FPMA and B grade 0 (single pixel) microflare emission on
the pre-flare and microflare time using sunkit-spex2 which utilises the

2 Formerly sunxspex, a Python spectral fitting tool: https://github.com/
sunpy/sunkit-spex
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Figure 3. Simultaneous thermal model fits, using sunkit-spex, of NuSTAR’s FPMA and B emission spectra during the pre-flare (21:09:40–21:12:00 UT, left
panel) and microflare (21:12:30–21:14:50 UT, right panel) times which are shown as shaded red and blue regions in Figure 1, respectively. The pre-flare spectra
are fitted with one thermal model (black) and then used as a fixed component for the microflare spectra (blue). The microflare spectra are fitted with an additional
thermal model (purple) to account for the flaring emission with the overall model being shown in black. The spectra from both times are fitted over the energy
ranges indicated by the horizontal green line in the residual panels. The temperatures and emission measures for each model fit are shown in their respective
model colours where the error ranges are calculated from MCMC analysis and report the 1-𝜎 equivalent uncertainty. Additionally, 100 random model samples
from the MCMC analysis are shown in orange. The relevant time ranges, effective exposures, and livetimes are also shown in each panel. The microflare fit in
the right panel is also referred to as the null scenario in relation to model comparison.

Emcee package (Foreman-Mackey et al. 2013). We find that the pre-
flare time (Figure 3, left panel) is represented well with an isothermal
model of temperature 3.3 MK and emission measure 1×1046 cm−3

from the Markov chain Monte Carlo (MCMC) analysis, a common
result from previous NuSTAR quiescent AR and pre-flare spectral
fitting (Glesener et al. 2017; Wright et al. 2017; Hannah et al. 2019;
Cooper et al. 2021). The isothermal model available in sunkit-spex
is a Python version of the IDL function f_vth.pro (Schwartz et al.
2002) and uses CHIANTI V7.1 (Dere et al. 1997; Landi et al. 2013)
with coronal abundances (Feldman et al. 1992; Landi et al. 2002).

The pre-flare thermal model is then used as a fixed component
when fitting the microflare time with an additional thermal model
representing the flaring emission (Figure 3, right panel). This model
fit provides a temperature and emission measure in a sensible range
for previous NuSTAR microflares, between 4–10 MK, as discussed
in Section 2.1; however, it is clear that this model does not provide
a satisfactory representation of the observed spectra. The residuals
of the microflare fit in Figure 3 indicate a poor fit between 2.5–
6 keV and a clear count excess above the model at energies >6 keV.
Therefore, we find sufficient reason to include an additional model
to the microflare fit in order to accurately represent the observed
spectra.

Two model candidates are tested to fit the excess: a thermal sce-
nario which includes an additional thermal model, and a non-thermal

scenario which involves the thick-target model (Brown 1971; Holman
et al. 2011). The thick-target model assumes a power-law distribution
of electrons of spectral index 𝛿 above a low energy cut-off E𝑐 that
lose all their energy through Coulomb collisions. These hypotheses
represent either hotter plasma or non-thermal emission during the
impulsive phase of the microflare. In relation to these two excess ad-
ditions, the microflare fit in Figure 3 is termed the null scenario since
the excess is not represented. Representations of the photon models
utilised in each scenario are shown in Figure A1. Note, unlike in the
spectral analysis of brighter NuSTAR microflares, no gain correction
(Duncan et al. 2021) is required due to the relatively high livetime of
microflare SOL2021-11-17T21:14.

Figure 4 shows, in red, the thermal scenario fit (left panel) and the
non-thermal scenario fit (right panel) to the microflare spectra. We
find that both scenarios resolve the poor fit to the 2.5–6 keV range
and represent the count excess well >6 keV.

The thermally fitted excess representation proposes the presence
of a relatively weak emitting source with a temperature of ∼10 MK;
whereas, the non-thermal case suggests thick-target emission with a 𝛿
of ∼8 and an E𝑐 of ∼6 keV. We note the non-thermal parameters are
well within those previously reported for other microflares (Hannah
et al. 2008; Glesener et al. 2020; Cooper et al. 2021). The lower
energy thermal models (purple) show a decrease in temperature and
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Figure 4. Two different spectral fits of the microflare spectra from the right panel of Figure 3, one with the count model excess fitted with a thermal model (the
thermal scenario, left panel) and the other fitted with a non-thermal model (non-thermal scenario, right panel) shown in red. The model parameters are shown in
their respective plots and colours with their error values showing 1-𝜎 equivalent uncertainties resulting from MCMC analysis with 100 random model samples
shown in orange.

increase in emission measure compared to the values obtained in
Figure 3 (right panel).

Using the temperatures and emission measures obtained from all
microflare fits, we find the microflare to be an estimated GOES class
between A0.02–A0.03. The GOES class is roughly estimated using
the goes_flux49.pro IDL routine as the microflare was too weak
to provide a direct GOES/XRS measurement.

From the flare volume upper limit determined in Section 2.2
and the microflare thermal parameters we find thermal energies
of 1.6+0.1

−0.1×1026 erg, 3.0+0.4
−0.4×1026 erg, and 2.1+0.1

−0.1×1026 erg for
the null, thermal, and non-thermal scenario fits, respectively, using
Equation 3 and A4 from Hannah et al. (2008) and Aschwanden
et al. (2015). In addition, the non-thermal power associated with
the thick-target component in Figure 4 (right panel) is calculated to
be 2.7+2.7

−1.2×1024 erg s−1 (Equation 5 from Wright et al. 2017) which
results in 3.7+3.8

−1.6×1026 erg over the course of the impulsive phase.
All thermal energies are in the expected range for a weak microflare
and we note in the non-thermal case both energies are consistent with
each other.

Therefore, both hypotheses shown in Figure 4 presents an interest-
ing and unique conclusion, either showing a microflare of this scale
producing such hot temperatures in the impulsive phase or providing
positive evidence for the presence of visible non-thermal particle
acceleration via a clear count excess in the spectral fits.

2.3.1 Best spectral fit

The fits shown in Figure 3 and 4 are determined using the Poissonian
likelihood, L(𝜃), given by

L(𝜃) =
𝑁∏
𝑖=0

𝑀𝑖 (𝜃)𝐷𝑖 × 𝑒−𝑀𝑖 (𝜃 )

𝐷𝑖!
, (1)

where 𝑀𝑖 (𝜃) represents the predicted model counts with parameters
𝜃 and 𝐷𝑖 is the observed number of counts in a given energy bin, 𝑖.
The number of data bins included in the optimisation is represented
by 𝑁 .

We find the most optimum fit to the microflare spectra with the
thermal, double thermal, and thermal and non-thermal models give
a Poissonian log-likelihood value, 𝑙𝑛(L𝑜𝑝𝑡 ), of -520, -484, and -
480, respectively. This loosely suggests the non-thermal scenario
fit (Figure 4, right panel) best represents the observed spectra out
of the tested models. However, it may be expected this is the case
since the thick-target model has more free parameters; therefore, it
is difficult to ascertain whether the non-thermal scenario should be
trusted more with such a small difference in log-likelihood values
given the different number of parameters available to each model.

It is possible there is a discrepancy between the thermal excess
scenario (Figure 4, left panel) and the EUV time profiles displayed
in Figure 1. The double-thermal fit suggests the presence of material
at ∼10 MK during the microflare’s impulsive phase. However, the
SDO/AIA 131 Å channel has a significant response to material of
this temperature (Lemen et al. 2012) but the light curve does not

MNRAS 000, 1–12 (2023)
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show a noticeable increase in emission around this time. Folding
the 10 MK thermal component through the EUV channel response,
we find the hot component is very faint and may be too weak to
produce a significant increase in 131 Å channel meaning the emission
mechanism of the higher X-ray energy excess remains ambiguous.

A more robust approach is needed to assess the thermal and non-
thermal representations of the microflare spectra. The nested sam-
pling approach described in Skilling (2004) provides a reproducible,
intuitive, and reliable method to ascertain how much more likely
one hypothesis is compared to another. Using this approach, we can
investigate the most likely representation of the microflare spectra.

3 COMPARING HYPOTHESES

Bayes formula (Jaynes 2003) is used extensively to test how well
a certain hypothesis, 𝐻, explains given data, 𝐷, via the posterior,
𝑃(𝐻 |𝐷), and is given by

𝑃(𝐻 |𝐷) = 𝑃(𝐷 |𝐻)𝑃(𝐻)
𝑃(𝐷) , (2)

where 𝑃(𝐷 |𝐻) is termed the likelihood which describes how likely
the data is observed if the hypothesis is true and 𝑃(𝐻) represents
the prior information on the hypothesis (Sivia & Skilling 2006). The
term 𝑃(𝐷) is the evidence which describes how likely the data is to
occur independent of hypothesis which is difficult to obtain and, in
some cases, has very little meaning.

Different hypotheses for the given data can then be compared
relative to each other using Equation 2 by calculating the posterior
odds. To compute this between two different hypotheses—say 𝐻1
and 𝐻2—for the same data, the ratio is taken between the respective
posteriors as

𝑃(𝐻1 |𝐷)
𝑃(𝐻2 |𝐷) =

𝑃(𝐷 |𝐻1)
𝑃(𝐷 |𝐻2)

𝑃(𝐻1)
𝑃(𝐻2)

, (3)

where we note the evidence term, 𝑃(𝐷), from Equation 2 cancels
(Ashton et al. 2022). Equation 3, therefore, provides a relative metric
as to which hypothesis between 𝐻1 and 𝐻2 is more likely. It is
common that the prior odds, ratio of 𝑃(𝐻1) and 𝑃(𝐻2), is evaluated
to 1 if there is no prior justifiable preference for one hypothesis over
another and so the posterior odds in this case is fully equivalent to
the ratio of the likelihoods, termed Bayes factor (BF).

Using a nested sampling algorithm (Skilling 2004, 2006), we can
estimate the likelihoods by investigating the parameter posterior un-
der the assumption that the hypothesis, now model 𝑀 , is true. Nested
sampling is a Bayesian tool used to compare parametric model fits to
data where the models have parameters, 𝜃, and priors, 𝑃(𝜃 |𝑀). This
is done by calculating the parameter posterior, 𝑃(𝜃 |𝐷, 𝑀), by

𝑃(𝜃 |𝐷, 𝑀) = 𝑃(𝐷 |𝜃, 𝑀)𝑃(𝜃 |𝑀)
𝑃(𝐷 |𝑀) , (4)

where we note that all terms depend on the model, 𝑀 , and the data,
𝐷, being fitted. This explicit form is typically presented in Bayesian
analysis, such as in MCMC analysis (Ireland et al. 2013) where the
𝑃(𝐷 |𝑀) term is often excluded in practice.

However, to avoid the repetition of nomenclature, we adopt another
equivalent representation

𝑃(𝜃) = L(𝜃)𝜋(𝜃)
Z , (5)

where the nested sampling process uses the likelihood L(𝜃) (e.g.,
Equation 1) and the prior 𝜋(𝜃) to estimate both the evidence Z and
the posterior 𝑃(𝜃).

Note that Z is equivalent to the likelihood term 𝑃(𝐷 |𝐻), in Equa-
tion 2 and 3, and is different to the previous evidence term 𝑃(𝐷)
from Equation 2.

The evidence, Z, could be calculated as

Z =

∫
𝜃
L(𝜃)𝜋(𝜃)𝑑𝜃, (6)

ensuring the integral of 𝑃(𝜃) over the parameter-space is equal to 1
(Sivia & Skilling 2006). However, this integral can quickly become
complex with an increasing number of parameter dimensions. The
nested sampling process takes an approach to simplify this calcula-
tion.

Estimating the evidences, Z (likelihood 𝑃(𝐷 |𝐻) in Equation 3)
allows for a robust comparison between models and how well they
explain the data. Criteria from Kass & Raftery (1995), for example,
can then be used to assign a relative confidence of one hypothe-
sis compared to another. Importantly, this is also true even if the
hypotheses rely on a different number of parameters or parameter
priors. The next section details how nested sampling is performed
and how Z is obtained mathematically.

3.1 Calculating the evidence Z with nested sampling

The evidenceZ is calculated by sampling a predefined and physically
motivated constrained prior, 𝜋(𝜃), for the model parameters while
calculating the likelihood, L(𝜃), at every corresponding location.
From this sampling, a quantity called the prior mass can be defined
(Skilling 2006). The prior mass, 𝜉, is the amount of prior enclosed
by some likelihood 𝜆 which is given by

𝜉 (𝜆) =
∫
L(𝜃 )>𝜆

𝜋(𝜃)𝑑𝜃, (7)

and contains all sampled points with L(𝜃) > 𝜆. From Equation 7,
we note that 𝜉 = 1 when 𝜆 = 0 (all sampled points are enclosed) and
so 𝜉 = 0 when 𝜆 = L𝑚𝑎𝑥 .

The definition of the prior mass can then simplify Equation 5 and 6
to

𝑃(𝜉) = L(𝜉)
Z (8)

and

Z =

∫ 1

0
L(𝜉)𝑑𝜉, (9)

respectively, where the evidence integral is now only performed over
one dimension, the prior mass. Equation 8 shows taking a random
sample of 𝜉𝑖 from 0–1, the range defined in Equation 9, provides a
random sample from the posterior 𝑃(𝜉). This is equivalent to ob-
taining a random sample from the posterior 𝑃(𝜃) with a random
parameter sample of 𝜃𝑖 as shown by Equation 5. A nested sampling
algorithm will then iterate through the random samples spread over
the constrained prior to calculate the evidence and posterior distri-
bution.

3.1.1 The information H

A useful value obtained throughout the nested sampling process is
a quantity known as the information, H . This quantity describes
where the bulk of the posterior lies, with the posterior occupying a
fraction of 𝑒−H within the constrained prior (Skilling 2006) and can
also be used to estimate the likely number of iterations to compress
the majority of the prior (Ashton et al. 2022). For example, if the
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majority of the posterior takes up a small region of the prior then H
is large and if most of the posterior occupies a large area of the prior
then H is small.

3.1.2 Iterating through the samples

The Python nested sampling package, Nestle3, used throughout the
analysis presented in Section 4 initially starts by sampling the con-
strained prior 𝑛𝑙𝑖𝑣𝑒 times where the corresponding likelihood value
is calculated at each sample. These live-points are then ordered from
smallest likelihood, L∗, to largest. The prior mass is then calculated
for L∗ before the corresponding live-point is removed and replaced
with another sample with a likelihood value >L∗ to conserve the
number of samples across iterations. The prior mass and the like-
lihood of the removed live-point is recorded and used to build the
integral described by Equation 9. Once a new live-point is chosen
the process begins again and continues until the stopping criteria has
been met (Skilling 2004).

The stopping criterion used in Nestle is one which estimates the
remaining prior mass to be sampled. The iterative process can be
stopped when the remaining estimated mass falls below a defined
threshold, 𝐴𝑡ℎ𝑟𝑒𝑠ℎ, using

𝑙𝑛(L𝑚𝑎𝑥,𝑖𝜉𝑖 + Z𝑖) − 𝑙𝑛(Z𝑖) < 𝐴𝑡ℎ𝑟𝑒𝑠ℎ, (10)

where L𝑚𝑎𝑥,𝑖 is the maximum likelihood of the live-points, 𝜉𝑖 is the
remaining prior mass, and Z𝑖 is evidence value at iteration 𝑖.

In addition to simplifying the evidence calculations, nested sam-
pling also obtains many random samples of the posterior through
the iterative procedure. Therefore, almost as a by-product, the same
information that MCMC analysis provides is also obtained in the
process.

A nested sampling algorithm can be applied to many different
problems involving model comparison. In Section 4 we apply the
nested sampling algorithm used by Nestle to the active region X-ray
microflare presented in Section 2 to determine the emission mech-
anisms present during its impulsive phase by testing different hy-
potheses for the observed data: the null, thermal, and non-thermal
scenarios.

4 THERMAL OR NON-THERMAL EMISSION

The analysis presented in Section 2 seems to indicate that non-
thermal emission is present during this estimated A0.02 microflare’s
impulsive phase; however, the arguments are qualitative or weakly
quantitative and far from decisive. Section 2.1 shows evidence of
an earlier peaking and more impulsive time profile in the higher, 6–
10 keV X-ray energies observed by NuSTAR compared to the lower
energy microflare emission (Figure 1, left panels). This supports
the presence of an additional process beyond the one producing the
EUV microflare signal, but it is not clear if this is due to a thermal
or non-thermal source.

In section 2.2, we discussed the observed presence of a clear mi-
croflare loop structure in the Fe xviii emission (Figure 2), suggesting
the presence of material between 4–10 MK which appears to be cor-
roborated by all microflare spectral fits (Figure 3, right panel, and
Figure 4). We also see loop footpoints across the SDO/AIA EUV
channels that are anchored in two opposite magnetically polarised
regions as viewed from SDO/HMI. Figure 2 indicates the presence

3 https://github.com/kbarbary/nestle

Table 1. The lower and upper limits to define the uniform constrained prior
for each model parameter used for nested sampling. The same notation for
each parameter used in the spectral fitting is given in brackets as well as the
parameter units. The parameters T2 and EM2 are present in all microflare fits
(Figure 3 and 4) while T3 and EM3 are only in the thermal scenario fit and
Fe− , 𝛿, and E𝑐 are only in the non-thermal scenario fit shown in Figure 4 to
fit the count model excess.

Model Parameter Lower Upper

Microflare Temperature (T2, [MK]) 2.5 10

Microflare Emission Measure (EM2, [cm−3]) 1×1042 1×1046

Excess Temperature (T3, [MK]) 8 15

Excess Emission Measure (EM3, [cm−3]) 1×1040 1×1044

Excess Electron Flux (Fe− , [e− s−1]) 1×1030 1×1033

Excess Electron Spectral Index (𝛿) 4 15

Excess Low-energy Cut-off (E𝑐 , [keV]) 3 10

of bright footpoints which could potentially be a result from heated
material through microflare energised electrons decelerating in the
lower solar atmosphere. This interpretation would align with the
presence of non-thermal emission.

Performing spectral fitting analysis on the X-ray microflare spectra
(Section 2.3) shows more evidence there is different behaviour below
and above 6 keV. We find that an additional model is required to
reasonably fit the count excess >6 keV beyond an isothermal fit and to
resolve the poor fit <6 keV shown in Figure 3 (right panel). However,
it is still not possible to confidently determine if an additional thermal
or non-thermal model is required (Figure 4).

In order to obtain a robust measure of confidence over the nature
of the high-energy 6–10 keV emission observed from the microflare,
we make use of the nested sampling process (see Section 3). The
nested sampling result will then provide a vigorous, intuitive, and
repeatable level of confidence on the emission mechanism most likely
responsible for the higher energy X-ray emission.

4.1 Nested sampling application to SOL2021-11-17T21:14

Since nested sampling relies on a constrained prior (Section 3.1),
effort must be taken to define appropriate bounds for each parameter.
We make use of a uniform prior for all parameters where the bounds of
each is determined by previous microflare studies with consideration
to the thermal and non-thermal energetics involved.

Table 1 shows the bounds for the uniform priors used in the nested
sampling analysis. Studies of microflares comparable in scale to the
one studied here, estimated GOES class ∼A0.02, have suggested that
those fitted with a single thermal model tend to have a temperature no
higher than ∼10 MK with emission measure ≲1×1046 cm−3 (Dun-
can et al. 2021; Vadawale et al. 2021). Additionally, some enhanced
pre-flare emission may be present while some isothermal NuSTAR
microflares have emission measures as low as∼1×1043 cm−3(Cooper
et al. 2021). Therefore, sensible prior bounds for the microflare tem-
perature and emission measure (T2 and EM2 from Figure 3 and 4)
are taken to be 2.5–10 MK and 1×1042–1×1046 cm−3, respectively.

From the physically motivated parameter prior ranges for T2 &
EM2, and using the volume estimate from Section 2.2, the possi-
ble thermal energies resulting from models within these bounds fall
between approximately 4×1024–2×1027 erg. Considering past NuS-
TAR sub-A class microflares, this is a conservative thermal energy
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range and helps support the choice of the defined parameter prior
bounds.

Next, priors must be defined for the thermal (T3 and EM3) and
non-thermal (Fe− , 𝛿, and E𝑐) excess model parameters. When other
microflares have been found to be best fitted with two isothermal
models, we find that the emission measure for the higher temperature
component is∼2 orders of magnitude less than the lower temperature
model (Duncan et al. 2021; Cooper et al. 2021) and so we choose
a prior emission measure range of 1×1040–1×1044 cm−3. In order
to investigate a potential hotter temperature component producing
the count model excess in Figure 3 (right panel) we set a prior
temperature range of 8–15 MK such that is overlaps with, and goes
beyond, the range being investigated for T2.

The priors for the non-thermal excess models are determined from
previous non-thermal X-ray microflare studies. Hannah et al. (2008)
finds 90% of the RHESSI microflares studied have a low-energy
cut-off between 9–16 keV with photon indices between 4–10 (corre-
sponding to electron indices between 5–11 for thick-target emission;
Brown 1971). However, the majority of these non-thermal X-ray mi-
croflares are of a greater GOES class and brighter than ones viewed
by NuSTAR (Glesener et al. 2020; Cooper et al. 2021) which do not
have emission extending to energies as high. Therefore, the conserva-
tive uniform prior bounds for the low-energy cut-off and the electron
index are defined to be 3–10 keV and 4–15, respectively.

The microflare presented here is much weaker in magnitude than
the non-thermal microflares investigated previously by NuSTAR and
so the electron flux is expected to be less than previously obtained.
Therefore, the prior range is estimated to be 1030–1033 electrons s−1

as this microflare is approximately three orders of magnitude weaker
in GOES classification than the non-thermal microflare studied in
Glesener et al. (2020) which is found to have an electron flux of
∼2×1035 electrons s−1. The prior constraints for the non-thermal
model provides an energy range ∼1023–1027 erg which is comple-
mentary to the thermal energy range being explored for the microflare
providing additional physical justification for the thick-target param-
eter constrained prior bounds.

Throughout the nested sampling analysis, all three scenarios are
run with 10,000 live-points and an 𝐴𝑡ℎ𝑟𝑒𝑠ℎ value of 0.1. These, again,
are conservative values to ensure the majority of the prior is sampled
adequately. The nested sampling result does not change significantly
with fewer live-points or a larger 𝐴𝑡ℎ𝑟𝑒𝑠ℎ, only the uncertainties
become larger.

4.2 Nested sampling results

Nested sampling analysis is performed on all three model represen-
tations of the microflare spectra where the process took on the order
of hours to complete for each model scenario using an Apple M1
Max MacBook Pro. The thermal and non-thermal representations of
the excess from Figure 4 (left and right panel) give 𝑙𝑛(Z) values
of −497.31 ± 0.03 and −493.63 ± 0.03, respectively, while the null
scenario, where the excess is not represented (Figure 3, right panel),
is estimated to have a value of −530.14 ± 0.03.

The H values (as described in Section 3.1.1) reported for the
analysis in each case is given to be ∼9 for the null scenario and
∼11 for both the thermal and non-thermal cases. The similar values
indicate that the bulk of the posterior lies within a similar fraction of
the constrained prior for each tested hypothesis.

The posterior distribution corner plots that accompany the evi-
dences are shown in Figure 5, 6, and 7. We find that the constructed
corner plots from the nested sampling analysis agree closely with
those produced from the previous MCMC analysis performed in

Table 2. The logarithm of Bayes factor, Bayes factor, and the corresponding
level of confidence from Kass & Raftery (1995) are shown for each model
scenario comparison for the microflare spectra. The error on 𝑙𝑛(BF) is ±0.04
for all values.

Comparison 𝑙𝑛(BF) BF Confidence

Z𝑡ℎ𝑒𝑟𝑚𝑎𝑙-to-Z𝑛𝑢𝑙𝑙 32.8 2×1014 Very Strong
Z𝑛𝑜𝑛−𝑡ℎ𝑒𝑟𝑚𝑎𝑙-to-Z𝑛𝑢𝑙𝑙 36.5 7×1015 Very Strong
Z𝑛𝑜𝑛−𝑡ℎ𝑒𝑟𝑚𝑎𝑙-to-Z𝑡ℎ𝑒𝑟𝑚𝑎𝑙 3.7 40 Strong

Section 2.3 with all parameter values agreeing well within the 1-𝜎
equivalent uncertainties. This provides confidence that the posterior
distribution for each model parameter, bound by the defined priors,
is sampled well in the MCMC and that there are no other relevant
solutions inside the physically motivated prior bounds.

With the confirmation from the corner plots produced from the
nested sampling analysis, and corroboration with the MCMC analysis
that the evidences have been calculated robustly, we are able to
compare each model representation to the others using Bayes factor
from Equation 3. This is reasonable as we have no evidence or
reason to prefer one model representation over the other; therefore,
we assume a prior odds ratio of 1 making the BF equal to the posterior
odds.

The BF for each comparison is shown in Table 2. We find that the
BF comparing the thermal and non-thermal representations of the
count excess are far more probable than not representing the excess
at all in the null scenario. Therefore, nested sampling has given a
quantitative measure of how much an additional model is required
beyond the pre-flare and isothermal fit with the thermal and non-
thermal scenarios being >1014 times more probable than the null
hypothesis.

Additionally, the nested sampling also shows that the non-thermal
representation is ∼40 times more likely to be the cause of the count
excess compared to the thermal model, corresponding to strong ev-
idence for this conclusion. Therefore, the nested sampling analysis
would suggest that this event is the weakest X-ray microflare to show
direct evidence for non-thermal emission.

To check the sensitivity of the nested sampling result on the choice
of physically motivated prior bounds from Table 1, we adjust the
bounds of each parameter prior by up to 20%. This still results
in the non-thermal scenario being more preferable to the thermal
representation with 𝑙𝑛(BF) values between 3.5–3.8.

Furthermore, we narrow the priors around the bulk of the T3
and EM3 distributions shown in Figure 6 while leaving the non-
thermal parameter priors unchanged in order to be more favourable
to the thermal scenario. An 𝑙𝑛(BF) value of ∼2 is obtained from this
test, which is still classified as positive evidence for the non-thermal
representation of the microflare (Kass & Raftery 1995).

We note that the best-fit log-likelihood values, 𝑙𝑛(L𝑜𝑝𝑡 ), stated
in Section 2.3.1 show similar differences to the log-evidence values,
𝑙𝑛(Z), for the different scenarios; however, the nested sampling
result is more informative and robust for model comparison. The
evidences can sufficiently compare models with different parameters
and priors, whereas a clear conclusion cannot be drawn from the
best-fit log-likelihood values as discussed in Section 2.3.1 and 3.

5 SUMMARY AND CONCLUSIONS

In this paper, we present the first analysis of X-ray flare spectra
using a nested sampling algorithm. This microflare is estimated to be
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Figure 5. Posterior distributions for the isothermal, null scenario, representation of the microflare spectra shown in Figure 3 (right panel) as determined from
nested sampling analysis. The thermal energy distribution is calculated from the temperature (T2) and emission measure (EM2) samples. The median and 1-𝜎
confidence intervals are displayed above the diagonal panels for each marginalised parameter distribution and shown with dashed lines. Contours of 50%, 68%,
and 90% levels are shown in the 2D marginalised posterior distribution.

approximately an A0.02 GOES equivalent class flare which shows
signs of high temperatures and/or non-thermal particle acceleration;
however, determining the extent of this emission is difficult using
arguments and methods performed in the past.

From the temporal, spatial, and spectral information discussed in
Section 2, we find evidence that the X-ray microflare emission is
not well represented with an isothermal model as a count excess is
present at higher energies in the NuSTAR spectra (Figure 3). Upon
investigating two emission mechanisms potentially responsible for
this we find that both a thermal and non-thermal explanation for the
excess appear to be equally valid with no decisive reason to pick one
over the other.

Qualitative evidence for a non-thermal representation is found
in the form of the lack of higher temperature (∼10 MK) emission
response in the 131 Å SDO/AIA channel (Figure 2.1) and potentially
in the presence of bright EUV loop footpoints visible throughout
the solar atmosphere (Figure 2.2). When performing spectral fitting,
the model with the non-thermal component produces a slightly more
preferable log-likelihood value (Figure 4); however, this metric may
be expected to be better due to the non-thermal component having
an extra free parameter to use during the fitting process compared to
the thermal model. Therefore, a conclusion cannot be made based on
the best-fit log-likelihood values.

We use a more robust model comparison method called nested
sampling (Section 3) which is used to determine an estimate for the
evidence attributed to each model representation of the data, there-
fore, allowing Bayes factor to be computed for model comparison. In
the process we also obtain the posterior distributions for each model
as shown in Figure 5, 6, and 7. We find that the model containing

the non-thermal component is most likely to represent the observed
microflare spectra with a BF of 7×1015 and 40 compared to the null
and thermal representation, respectively.

Therefore, we report the weakest X-ray microflare to have direct
observation of non-thermal particle emission suggesting that X-ray
flares of the estimated scale A0.02 do indeed show similar traits
to their larger counterparts. From the nested sampling results, this
microflare produces a thermal energy of 2.1+0.1

−0.1×1026 erg which is
rational compared to the non-thermal energy of 4.2+4.6

−1.9×1026 erg re-
leased over the course of its impulsive phase at 3.0+3.3

−1.4×1024 erg s−1.
The corresponding energy posterior distributions of each model sce-
nario are shown in Figure 5, 6, and 7. This shows that microflares
this weak, and likely weaker, continue to undergo the same physical
processes with the same/similar emission mechanisms as brighter
flares.

The nested sampling algorithm is in no way specific to X-ray
microflare analysis. It can use used to gain insight into general model
comparison problems and is able to produce the same data products
as MCMC analysis. However, effort will be made to speed up the
process specific to this microflare analysis. This could be achieved
by speeding up the code used for the individual component models
and testing a range of nested sampling algorithm implementations
such as diffusive nested sampling (Brewer et al. 2011) and those
discussed in Speagle (2020) and Williams et al. (2023).

Using nested sampling has enabled the robust analysis of the high-
energy count excess. Methods to determine the emission mechanism
for such features in the past are either primarily subjective in nature
and/or fail to give a reliable conclusion. The nested sampling algo-
rithm is able to allow the repeatable and intuitive study of data with
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Figure 6. Similar to Figure 5 but the nested sampling analysis result for the thermal scenario shown in the left panel of Figure 4. The thermal energy distribution
is calculated from the temperature (T2 & T3) and emission measure (EM2 & EM3) samples.

low signal and is crucial when investigating microflares at such weak
scales. Nested sampling will be used in future NuSTAR microflare
studies, and other flare studies with ambiguous spectra, to determine
the confidence on the emission mechanisms present throughout the
event.
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Figure 7. Similar to Figure 5 but the nested sampling analysis result for the non-thermal scenario shown in the right panel of Figure 4. The thermal energy
distribution is calculated from the temperature (T2) and emission measure (EM2) samples and the non-thermal energy distribution is calculated from the electron
flux (Fe− ), electron spectral index (𝛿), and the low-energy cut-off (E𝑐) samples.

DATA AVAILABILITY

All data used is publicly available. SDO data can be obtained from
the Joint Science Operations Center (JSOC)5 using SunPy’s Fido6
object while the NuSTAR data is available from the NuSTAR Master

5 http://jsoc.stanford.edu/
6 https://docs.sunpy.org/en/stable/guide/acquiring_data/
fido.html#fido-guide

Catalog7 with the OBSID 20618003001. An overview of NuSTAR
solar observation campaigns is also available on Github.8

7 https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3table.
pl?tablehead=name=numaster&Action=More+Options
8 https://ianan.github.io/nsigh_all/
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APPENDIX A: X-RAY THERMAL AND NON-THERMAL
PHOTON MODELS

Figure A1 displays the photon models used to investigate the null
(left panel), thermal (middle panel), and non-thermal (right panel)
scenarios for the microflare as initially described in Section 2.3. Two
photon models are utilised to represent each scenario, an isothermal
model and a thick-target non-thermal model. Both models represent
a photon spectrum produced from different electron distributions.

The isothermal model (purple in all panels and red in the middle
panel of Figure A1) represents a photon spectrum produced from a
Maxwell-Boltzmann distribution of electrons. The isothermal model
is composed of continuum & line emission and is a function of the
plasma temperature (T) and emission measure (EM).

The non-thermal photon spectrum (red in the right panel of Fig-
ure A1) results from a power-law electron distribution losing all their
energy through Coulomb collisions (Brown 1971; Holman et al.
2011). The thick-target model is a function of electron flux (Fe− ),
electron spectral index (𝛿), and low-energy cut-off (E𝑐).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Photon models, obtained from sunkit-spex, used to fit the NuSTAR microflare X-ray count spectra in the null (left panel), thermal (middle panel), and
non-thermal (right panel) scenarios shown in Figure 3’s right panel and Figure 4. The models shown are calculated using NuSTAR’s native energy resolution
and the parameter values obtained from MCMC analysis (Section 2.3). Each model component, and corresponding parameter set, is shown in purple or red with
the total model in the thermal and non-thermal case being shown in black.
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